Pipeline

Related Publications

Hakonarson H, Kao C, Squires LA, et al. 6.61 PREDICTIVE VALUE OF GLUTAMATERGIC NETWORK GENE MUTATION TESTING FOR ATTENTION-DEFICIT/HYPERACTIVITY DISORDER IN CHILDREN AND ADOLESCENTS IN AN OUTPATIENT PSYCHIATRY SETTING. Journal of the American Academy of Child & Adolescent Psychiatry. 2016;55, S224.
http://www.jaacap.com/article/S0890-8567(16)31609-4/abstract

Elia J, Khan M, Kim C, et al. 6.67 GLUTAMATERGIC NETWORK GENE MUTATIONS IN ADOLESCENTS AND CHILDREN WITH ATTENTION-DEFICIT/HYPERACTIVITY DISORDER. Journal of the American Academy of Child & Adolescent Psychiatry. 2016;55, S226.
http://www.jaacap.com/article/S0890-8567(16)31615-X/abstract

Elia J, Glessner JT, Wang K, et al. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nature genetics. 2012;44(1):78-84.
https://www.ncbi.nlm.nih.gov/pubmed/22138692

Byrnes KR, Loane DJ, Faden AI. Metabotropic glutamate receptors as targets for multipotential treatment of neurological disorders. Neurotherapeutics. 2009;6(1):94-107.
https://www.ncbi.nlm.nih.gov/pubmed/19110202

Harvey BH, Shahid M. Metabotropic and ionotropic glutamate receptors as neurobiological targets in anxiety and stress-related disorders: focus on pharmacology and preclinical translational models. Pharmacol Biochem Behav. 2012;100(4):775-800.
https://www.ncbi.nlm.nih.gov/pubmed/21708184

Pitsikas N. The metabotropic glutamate receptors: potential drug targets for the treatment of anxiety disorders? Eur J Pharmacol. 2014;723:181-4.
https://www.ncbi.nlm.nih.gov/pubmed/24361306

Yasuhara A, Chaki S. Metabotropic glutamate receptors: potential drug targets for psychiatric disorders. Open Med Chem J. 2010;4:20-36.
https://www.ncbi.nlm.nih.gov/pubmed/21160908

McDonald-McGinn DM, Sullivan KE, Marino B, et al. 22q11.2 deletion syndrome. Nat Rev Dis Primers. 2015;1:15071.
https://www.ncbi.nlm.nih.gov/pubmed/27189754

Cardinale CJ, Wei Z, Panossian S, et al. Targeted resequencing identifies defective variants of decoy receptor 3 in pediatric-onset inflammatory bowel disease. Genes Immun. 2013;14(7):447-52.
https://www.ncbi.nlm.nih.gov/pubmed/23965943

Kugathasan S, Baldassano RN, Bradfield JP, et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat Genet. 2008;40(10):1211-5.
https://www.ncbi.nlm.nih.gov/pubmed/18758464

Steinberg MW, Shui JW, Ware CF, et al. Regulating the mucosal immune system: the contrasting roles of LIGHT, HVEM, and their various partners. Semin Immunopathol. 2009;31(2):207-21.
https://www.ncbi.nlm.nih.gov/pubmed/19495760

Wang J, Anders RA, Wang Y, et al. The critical role of LIGHT in promoting intestinal inflammation and Crohn's disease. J Immunol. 2005;174(12):8173-82.
https://www.ncbi.nlm.nih.gov/pubmed/15944326

Lin WW, Hsieh SL. Decoy receptor 3: a pleiotropic immunomodulator and biomarker for inflammatory diseases, autoimmune diseases and cancer. Biochem Pharmacol. 2011;81(7):838-47.
https://www.ncbi.nlm.nih.gov/pubmed/21295012